3x^2-12=-6x

Simple and best practice solution for 3x^2-12=-6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-12=-6x equation:



3x^2-12=-6x
We move all terms to the left:
3x^2-12-(-6x)=0
We get rid of parentheses
3x^2+6x-12=0
a = 3; b = 6; c = -12;
Δ = b2-4ac
Δ = 62-4·3·(-12)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{5}}{2*3}=\frac{-6-6\sqrt{5}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{5}}{2*3}=\frac{-6+6\sqrt{5}}{6} $

See similar equations:

| 6*10t=360 | | 6*10^t=360 | | 10^3n=1000000 | | b=2+0.5B | | b=2+0.5B | | b=2+0.5B | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | X=2+4y-5 | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | 4x(3x7)=7x(4x3) | | 10^(n+1)=1 | | 4x(3x7)=7x(4x3) | | 10^(n+1)=1 | | 10^(n+1)=1 | | 10^(n+1)=1 | | −10(x−10)=−60 | | 3x+1=9x.1/27 | | 8x.1/4x-1=1/32 | | -3(2a-0)=a | | 1.10(x-2)+15=8x+7 | | -x^2=35+12x | | 19+3g-18g-2g=14 | | 8x-2x=180 | | 12x+0.05=45,580 |

Equations solver categories